Monte Carlo simulation
![]() |
[edit] Introduction
A Monte Carlo simulation is a computational risk analysis tool applied to situations that are uncertain or variable. It is a mathematical way of predicting the outcomes of a situation or set of circumstances by giving a range of possible outcomes and assessing the risk impact of each. It is also referred to as the ‘Monte Carlo method’ or ‘probability simulation’ and is used in many diverse applications such as construction, engineering, finance, project management, insurance, research, transportation and so on.
The name is thought to have been devised by scientists working on the atom bomb in reference to the principality of Monaco – well known for its casinos.
A key characteristic of a Monte Carlo simulation is that it provides a more realistic picture of likely future outcomes by generating a range of possible values, not just a single estimate. In construction, it can be used to predict how long a particular task will take and its likely effect on the programme schedule.
[edit] Mathematical modelling
To begin with, a mathematical model is created using a range of estimates for a particular task. So, for example, a project manager may consider the time it may take to complete a set of tasks by:
- Considering worst case scenarios (ie the maximum expected time values for all variables),
- Considering best-case scenarios (ie the minimum expected time values for all variables).
- Considering the most likely result.
So, for a particular set of tasks on a construction project, the project manager may estimate the following:
Task | Best case (minimum) | Most likely | Worst case (maximum) |
Task 1 | 2 weeks | 4 weeks | 7 weeks |
Task 2 | 3 weeks | 6 weeks | 9 weeks |
Task 3 | 8 weeks | 13 weeks | 18 weeks |
Total | 13 weeks | 23 weeks | 34 weeks |
From the table above, it can be seen that the range of outcomes for completing the three tasks ranges from 13 to 34 weeks.
These estimates are inputted into the Monte Carlo simulation which may be run 500 times. The likelihood of a particular result can be tested by counting how many times it was returned in the simulation and a percentage created.
So, it may be that the after 500 simulations, the most likely estimate of 23 weeks completion was only returned 20% of the time (a probability of only 1 in 5). Whereas, completion in 30 weeks was returned 80% of the time (4 in 5), which may be a more realistic basis for the project manager’s decision making.
Note: the extremes may be discounted. It should also be noted that the method is only as good as the original estimates used to create the model. Also, the values outputted are only probabilities but they may give planners a better idea of predicting an uncertain future.
Palisade @RISK for Excel from Palisade Corporation is just one of the available software programmes able to undertake Monte Carlo simulations.
NB The Green Book, Central Government Guidance On Appraisal And Evaluation, Published by HM Treasury in 2018, suggests that: ‘Monte Carlo Analysis is a simulation-based risk modelling technique that produces expected values and confidence intervals as a result of many simulations that model the collective impact of a number of uncertainties.’
[edit] Related articles on Designing Buildings Wiki
- Code of practice for project management.
- Code of practice for programme management.
- Construction project.
- Construction project manager - morning tasks.
- Contingency theory.
- Game theory.
- Microsoft's six ways to supercharge project management.
- Multi criteria decision analysis.
- Project manager.
- Project execution plan.
- Project manager's report.
- Project monitoring.
- Risk management.
Featured articles and news
Shortage of high-quality data threatening the AI boom
And other fundamental issues highlighted by the Open Data Institute.
Data centres top the list of growth opportunities
In robust, yet heterogenous world BACS market.
Increased funding for BSR announced
Within plans for next generation of new towns.
New Towns Taskforce interim policy statement
With initial reactions to the 6 month policy update.
Heritage, industry and slavery
Interpretation must tell the story accurately.
PM announces Building safety and fire move to MHCLG
Following recommendations of the Grenfell Inquiry report.
Conserving the ruins of a great Elizabethan country house.
BSRIA European air conditioning market update 2024
Highs, lows and discrepancy rates in the annual demand.
50 years celebrating the ECA Apprenticeship Awards
As SMEs say the 10 years of the Apprenticeship Levy has failed them.
Nominations sought for CIOB awards
Celebrating construction excellence in Ireland and Northern Ireland.
EPC consultation in context: NCM, SAP, SBEM and HEM
One week to respond to the consultation on reforms to the Energy Performance of Buildings framework.
CIAT Celebrates 60 years of Architectural Technology
Find out more #CIAT60 social media takeover.
The BPF urges Chancellor for additional BSR resources
To remove barriers and bottlenecks which delay projects.
Flexibility over requirements to boost apprentice numbers
English, maths and minimumun duration requirements reduced for a 10,000 gain.
A long term view on European heating markets
BSRIA HVAC 2032 Study.
Humidity resilience strategies for home design
Frequency of extreme humidity events is increasing.
National Apprenticeship Week 2025
Skills for life : 10-16 February
Comments
In undertaking a Monte Carlo risk analysis it should be noted that the variables to which the probabilities are assigned should be independent of each other. As an example the price of reinforced concrete and the price of steel are not necessarily independent of each other.